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Experiments on surface waves were made using a cylindrical container oscillated 
horizontally with the period T close to that associated with the two known 
dcgenerate modes. Outside a certain region in the (T,x,)-plane, where xo is the 
amplitude of the forcing displacement, surface waves exhibit either of the two kinds 
of regular motions whose amplitudes are constant. Within this region, however, the 
wave amplitude slowly changes, expressing the irregular or periodic motion of 
surface waves. In  order to analyse these motions in detail, the slow evolution of four 
variables associated with the amplitudes and phases of the two modes is computed 
from the free-surface displacement at two measuring points. It is shown that the 
most common attractor corresponding to the irregular wave motion is the strange 
attractor with a positive maximum Liapunov exponent and a correlation dimension 
of 2.1-2.4. Furthermore, another kind of chaotic attractor and a few periodic orbits 
are found in a small parametric region. The route to chaos associated with period- 
doubling bifurcation is also observed. The above experimental results are compared 
with the solutions to  weakly nonlinear evolution equations derived by Miles. We find 
that the equations can explain well many of the experimental results on regular and 
irregular wave motions. In  particular, the most common chaotic attractors both in 
the experiments and in the theory have similar shapes in a phase space, and also yield 
similar values for maximum Liapunov exponents and correlation dimensions. 

1. Introduction 
Irregular motions are commonly found in fluid systems. There has been attempts 

to understand some of them from the standpoint of the chaos in systems having only 
a few degrees of freedom. Two famous examples are Rayleigh-B&nard convection 
and Taylor-Couette flow. 

Besides these systems, surface waves in a closed basin are known to evolve 
irregularly under appropriate regular resonant oscillation of the container. Ciliberto 
& Gollub (1985) experimentally investigated the evolution of surface waves due to 
vertical oscillation of a cylindrical container a t  frequencies close to those of the two 
nearly degenerate modes. They found a slowly evolving chaotic or periodic motion 
in a certain region of amplitude and frequency of the forcing. The attractor 
corresponding to the chaotic motion was shown to have a dimension close to 2.2 and 
a t  least one positive Liapunov exponent. Furthermore, they observed the route to 
chaos associated with period-doubling bifurcations. Gollub & Meyer ( 1983) examined 
the evolution of a single mode due to vertical oscillation. Keolian et al. (1981) studied 
surface waves due to vertical oscillation in thin annular troughs. Both experiments 
also found period-doubling bifurcations and chaotic motions. 

Hutton (1963) did experiments on surface waves due to harmonic horizontal 
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oscillation in a circular cylinder. He chose the driving frequency in the neighbourhood 
of the natural frequency of the two degenerate modes, whose free-surface 
displacements 7 can be written as 

cos B 

where rand 6' are plane polar coordinates on which the axis of oscillation is 6' = 0 and 
x. The value of k is chosen so that La is the smallest positive zero of J ; .  Here u is the 
radius of the cylinder. I n  this experiment he found two regular wave motions in 
certain regions of amplitude and frequency of the forcing. The first is a planar 
oscillation in which the points of largest amplitude always lie on the axis of 
oscillation. The second is a regular rotational motion in which the point of largest 
free-surface displacement rotates regularly along the wall. He found the regions where 
these motions can be observed, although the boundary of the rcgular rotational 
motion region is not definite. He furthermore found that the surface waves cvolvc 
irregularly in a certain parametric region. He did not study this bchaviour 
quantitatively however. 

Miles (1976) proposed a weakly nonlinear theory for surface waves in a cylindrical 
container. According to this theory, he derived evolution equations for horizontal or 
vertical resonant oscillation of a cylindrical container. (Miles 1984a. b j  Miles 
(1984b, c )  then examined the properties of the solutions to  these evolution equations 
for horizontal oscillation, which is similar to the configuration of Hutton's 
experiments. He found two kinds of fixed points corresponding to the two regular 
wave motions in the experiments. He also obtained limit cycles and chaotic 
attractors expressing periodic and irregular modulations of the amplitude of free- 
surface displacement, respectively. 

In this paper, we first describe the evolution of surface waves in an experiment 
similar to that of Hutton. Our main aim is to examine the irregular wave motion in 
detail from the standpoint of the chaos in systems having only a few degrees of 
freedom. We describe the experimental configuration in $ 2 .  The results of the 
experiment are given in $3. We accurately determined the regions in the (T. x,j-plane 
where planar oscillations or regular rotational motions can be observed. Herc T is the 
period of the oscillation, and x,, its amplitude. Outside these regions. the wave 
amplitude a t  any point slowly changes, expressing the irregular or periodic motion 
of surface waves. In  order to analyse these motions in detail, the slow evolution of 
four variables associated with the amplitudes and phases of the two modes given in 
( 1 . 1 )  was computed from the free-surface displacement a t  two measuring points. 
Consequently, it is shown that the most common attractor corresponding to the 
irregular wave motion is the strange attractor with a positive maximum Liapunov 
exponent and a correlation dimension of 2.1-2.4. Furthermore, another kind of 
chaotic attractor and a few periodic orbits are found in a small parametric region. 
The route to chaos associated with period-doubling bifurcation is also observed. 

Next, the relevant evolution equations derived by Miles, given in $4, were solved 
numerically to compare their solutions with the above experimental results. After 
describing in $5  the properties of some of the solutions, some comparisons with the 
experimental results are made in $6. Consequently, we find that the evolution 
equations can explain well many of the experimental results on regular and irregular 
wave motions. That is, the regions in the (T,x,)-plane where regular planar 
oscillations or regular rotational motions are experimentally observed almost 
coincide with the regions where stable fixed points corresponding to these wave 
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motions exist. Furthermore, a few irregular or periodic wave motions are 
experimentally observed, approximately in the same parametric region where the 
equations point to chaotic attractors or limit cycles. The attractor similar to the 
most common chaotic attractor found in the experiments is commonly found as the 
solutions to the equations in the same parametric region. The correlation dimensions 
and the maximum Liapunov exponents of these two attractors yicld similar values. 
Moreover, the transition to chaos associated with the period-doubling bifurcation is 
found both in the experiments and in the theory. Some discrepancies, however, 
remain. For example, many of the limit cycles of the evolution equations are not 
stably observed in the experiments. Next, we attempt to explain the reason for the 
discrepancies, taking into consideration the effect of the unavoidable variation of T 
in the experiments, and the assumptions made in the theory. 

Finally, the relevance of the experimental results to those of the experiments by 
Ciliberto & Gollub (1985) is discussed in 97. 

2. Experimental configuration 
I n  the experiments, a cylindrical tank of radius a = 9.24 em, partially filled with 

water to a depth d = 14.1 cm, is oscillated sinusoidally using a mechanical driving 
system, shown in figure 1,  consisting of a crank mechanism connected to a 
servomotor. A bearing guide restricts the oscillation to a specified horizontal 
direction. The water temperature is kept a t  18.1f0.1 "C, so as to make thermal 
variations in viscosity insignificant. 

The oscillation period T is measured by transmitting the pulse from a magnetic- 
type detector to a frequency counter. The variation of T is a t  most 0.035%. The 
amplitude of the displacement of the tank, xo, is adjusted by changing the stroke of 
the crank mechanism. The oscillation can be regarded as nearly sinusoidal, since the 
energy of the higher harmonics is only 0.19% of that of the primary wave. 

Free-surface displacement was measured a t  two points M, [ ( r ,  0) = (0.87a, 0)] and 
M, [ ( T ,  0) = (0.87a, in)] using a capacity-type wave-height meter. These free-surface 
displacements as well as the displacement of the tank are recorded simultaneously in 
a data recorder. 

The period associated with the modes given in (1 .1)  can be written as 

27c 
(kg  tanh kd);' 

To = 

where g is the gravitational acceleration and ak = 1.8412. The value To is 0.4513 s for 
the above values of a and d.  Hereafter, we use 

T-To T, = - 
To 

instead of T .  The experiments were done for -0.125 d T, < 0.075 and xo < 0.1 em. 
The behaviour of surface waves was usually examined by slowly increasing or 

decreasing T, with a fixed xo. I n  order to exclude transient effects, we made the 
observation or recording of surface waves after waiting at least 20 min., keeping 
T, fixed. The free-surface displacements a t  two points and the tank displacement 
were recorded for 40 min. (about 5000T) for xo = 0.05 ern only. 
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FIGURE 1. Schematic diagram of the apparatus. 1. AC 400W servomotor ; 2. pulley; 3. magnetic- 
type detector; 4. frequency counter; 5 .  crank mechanism; 6. water tank; 7. bearing guide; 
8. oscillating table ; 9. wave-height meter; 10. displacement transducer; 11. linearizer ; 12. data 
recorder; 13. pen recorder; 14. the direction of oscillation. 

3. Experimental results 
3.1. Phase diagram 

Figure 2 shows the behaviour of surface waves due to horizontal oscillation with 
1 

displacement. 
2n 
T x = xo cos-t. 

Here T,,, defined in ( 2 . 2 ) ,  is used as an abscissa in place of T. If I T, 1 is sufficiently large, 
that is on the left of the line L, or on the right of the line L, in figure 2 ,  a regular 
planar oscillation is observed, regardless of initial states. The contour lines of free- 
surface displacement in this motion are always symnietric about the axis of 
oscillation, and thus the points of largest amplitude are always on this axis. 

On the other hand, if IT, 1 is sufficiently small, that is in the region between the lines 
L, and L,, a regular rotational motion is observed, regardless of initial states. In this 
motion, the point of largest free-surface displacement rotates regularly along the 
wall. Both clockwise and anticlockwise rotations are possible because of the 
symmetry of the system about the axis of oscillation. The initial condition 
determines the direction of the rotation. 

In  the region between the lines Ll and L,, either the regular planar oscillation or 
the regular rotational motion can be observed, depending on the initial condition. 
That is, the planar oscillation appears when we suddenly start the forcing with (T,, xo) 
in this region or when T, is increased slowly from the region on the left of the line 
L, with fixed xo. In  contrast to this, the regular rotational motion continues when 
T, is decreased slowly from the region between the lines L, and L, with fixed xo. 

In the case of the above two regular motions, the amplitudes of the free-surface 
displacements at any point do not change with time. In  the region between the lines 
L, and L, in figure 2 ,  however, the amplitudes change irregularly or periodically, and 
the timescale of the change is much larger than the period of the forcing. A detailed 
analysis of this motion was made mainly for xo = 0.05 cm. The results will be shown 
in the following subsections. 
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FIGURE 2. Phase diagram as a function of the period relative to the resonant period T, and the 
amplitude zo of the forcing. The boundaries of the regions for several wave motions in the 
experiments are expressed by solid lines connecting the measured point,s denoted by the symbols, 
Broken lines denote the boundaries where the number of stable fixed points of (4.5) changes. 

0 

The classification of wave motions was not done for x,, < 0.016 cm, since the free- 
surface displacements are too small for direct observation or for analysis of recorded 
data. Breaking of waves seems not to occur for x,, 6 0.05 cm, whereas small breaking 
may occur in the irregular wave motion for x,, 2 0.075 cm. 

The phase diagram figure 2 is consistent with Hutton's experimental results on the 
regular planar oscillation. 

3.2. Irregular or periodic wave motions 

When x,, is fixed at  0.05 cm and T, is increased slowly from the values between those 
a t  V, and V, in figure 2 and beyond, the following changes in surface-wave motion 
occur. For T, less than 0.0063, that is on the left of V,, we observe the regular 
rotational motion, as mentioned in 53.1. When T, increases beyond this value, the 
motion becomes unstable and a slow modulation of the amplitudes is observed. Until 
T, reaches 0.0102, the point of largest free-surface displacement continues to rotate 
in one direction, although the speed of the rotation varies slowly with time. The 
evolution of wave amplitudes in this unidirectionally rotating motion is periodic for 
0.0063 < 5'; < 0.0093, but is irregular for 0.0093 < T, < 0.0102. 

When T, increases beyond 0.0102, we can observe a bidirectionally rotating 
motion, in which the direction of the rotation changes irregularly. This motion is 
associated with irregular slow evolution of both the wave amplitudes and the speed 
of the rotation. In  the range where 0.0102 < T, < 0,0133, both the unidirectionally 
and the bidirectionally rotating irregular motions can be observed. The two motions 
appear alternately a t  long irregular time intervals. The larger T, is, the smaller the 
ratio of the time interval for the unidirectionally rotating motion. In  the relatively 
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FIGURE 3. Time evolution of the amplitudes of free-surface displacements at two measuring points ’ 
M, at ( T ,  0) = (0.87a, 0) and M, at ( r , 0 )  = (0.87a, i n ) :  zo = 0.05 cm and T, = 0.0196. The primary 
wave of period T is not appreciable in this figure. 

1 T I - 1  I 

f (Hz) 
FIGURE 4. Power spectrum shown on a logarithmic scale computed from the free-surface 
displacement at M, : z,, = 0.05 em and T, = 0.0196. There are fairly narrow peaks with freciurnciesf 
around 1/T, 2/7’, .., . 

wide range where 0.0133 < T, < 0.0326, only the irregular bidirectionally rotating 
motion is observed. One example of this motion is shown in figure 3, where the 
evolution of the amplitudes of free-surface displacements a t  two measuring points 
M, and M, is given. Note that the primary wave of the period T is not shown explicitly. 
Figure 4 represents the power spectrum computed from the free-surface displacement 
a t  M, shown in figure 3. Reflecting the slow modulation, there are fairly narrow peaks 
with frequencies f around I /T ,  2/T,  . .. . 

For T, within the narrow region where 0.0326 < T, < 0.0332, we observe an 
approximately periodic wave motion, in which the amplitudes of frrc-surface 
displacements vary almost periodically and the direction of the rotation changes 
almost regularly. If T, increases a little more, to 0.0332, which corresponds to in 
figure 2, the regular planar oscillation is observed. 

On the other hand, when 7; is slowly reduced from the value corresponding to 
the regular planar oscillation, this motion continues until T, rcaches 0.0290. M hcrc’ 
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the irregular bidirectionally rotating motion emerges, but the approximately 
periodic wave motion is not found. Therefore, in the narrow region where 
0.0290 < T, < 0.0332, the wave motion depends on the initial condition. For 
smaller decreasing values of T,, the wave motion is approximately the same as that 
obtained by the slow increase of T,. 

3.3. Analysis based on four variables associated with two relevant modes 
In  order to  examine quantitatively the various wave motions introduced in the 
preceding subsections, the following analysis is made for xo = 0.05 cm and 0.005 < 
T, G0.034. First, since T, is close to zero, we assume that the free-surface 
displacement 7 can be expressed as 

J1(kr)  +"(t, r ,  8), 
J1(0.87ak) 

7 = [(pl cos wt + q, sin wt)  cos 8 + (p ,  cos wt + q, sin wt)  sin 81 

( 3 4  

where r and 0 are plane polar coordinates on which the axis of oscillation is 0 = 0 and 
n, and w = 2n/T and ak = 1.8412. The four variables p,, q,, p ,  and q, are assumed to  
evolve with a timescale much larger than T .  

Since in our system there is no other mode whose natural period is close t o  To, the 
contribution of any other mode may be neglected. As illustrated in figure 4, the 
remaining term N ( t ,  r ,  8) consists mainly of the components that  evolve with periods 
close to  iT, $T, ... . Their energy is considerably smaller than that of the primary 
wave for (Tr, xo) in the above parametric region. Moreover, for these (Tr, xo) the 
assumption of slow variation of p , ,  q,, p ,  and q, is certainly valid, as illustrated in 
figure 3. Therefore, the evolution of surface waves may approximately be expressed 
by the slow variation of the four variables. 

The values of pl, ql, p ,  and q, were computed for each period of time with interval 
T from the free-surf-ace displacements at two points M, and M,, by integrating over 
the time T the above data multiplied by coswt or sinwt. The evolution of- wave 
motion is approximately represented by the trajectory o f p  = ( p l ,  q1,p2, 9,) in four- 
dimensional phase space. Here we should note that if a trajectory (pl(t), ql ( t ) ,p2( t ) ,  
q,(t)) is observed, then the trajectory (p l ( t ) ,  q l ( t ) ,  -p2( t ) ,  -q,(t)) is also observable. 
This is due to the symmetry of the system with respect to  the axis of oscillation. 

Thep  for the regular planar oscillation or the regular rotational motion always has 
a constant value; here p ,  and qz are zero only for the planar case. Figure 5 shows the 
Tr-dependence of (p i  + q$, which approximates the amplitude of the free-surface 
displacement a t  MI. The amplitude for the regular planar oscillat,ion increases as 
T, approaches zero. The amplitude for the regular rotational motion is larger than 
that for the regular planar oscillation, and increases as T, decreases. Hutton's 
experiment gives similar results. For T, between V, and V, in figure 5 ,  the amplitude 
varies in time, and only its maximum value is shown. The maximum amplitude for 
the irregular bidirectionally rotating motion, denoted by triangles, is larger than that 
for any regular wave motions, and increases with T,. The maximum amplitude for the 
unidirectionally rotating motion, denoted by squares, increases rapidly with T,. Then 
the transition to the irregular motion (especially to the bidirectionally rotating 
motion) can be said to  give rise to  the rapid increase in the maximum wave 
amplitude. 

Next, we show the attractors, represented by the trajectories of p in the phase 
space, for several kinds of wave motions. To express the attractors, we use the 
projections of the trajectories to one or four two-dimensional subspaces. Figures 6 
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FIGURE 5. The T,-dependence of (p: +q$, which approximates the amplitude of free-surface 
displacement at M I :  z,, = 0.05 cm. Circles and crosses denote the experimental values for the 
regular planar oscillation and the regular rotational motion, respectively. Triangles and squares 
denote the maximum values of (p2 + q;); for the irregular bidirectionally and unidirectionally 
rotating motions, respectively. The values for the fixed points of (4.5) corresponding to the regular 
planar oscillation and the regular rotational motion are expressed by thin and bold solid lines, 
respectively. Broken lines denote the boundaries of the regions for several wave motions in the 
experiments. 

and 7 (a )  show the attractors throughout the transition from the regular rotational 
motion to the irregular unidirectionally rotating motion. llopf bifurcation occurs a t  
T, = 0.0063 and then limit cycles are observed for 0.0063 < T, < 0.0090 (figure 6b, c).  
Afterwards period-doubling bifurcation occurs a t  T, = 0.0090, as shown in figure 
6 f d ) .  For 0.0093 < T, < 0.0102, we obtain the chaotic attrsctor shown in figure 7 (a).  
Although the successive period-doubling bifurcations are predicted theoretically as 
one of the routes to chaos for 0.0090 < T, < 0.0093, the second period-doubling 
bifurcation was not found, probably because our experiments were insufficiently 
accurate. 

An example of the attractor for irregular bidirectionally rotating motion is shown 
in figure 7 ( b ) .  Although such attractors are commonly observed for 0.0133 < T, < 
0.0326, the uneven chaotic attractors illustrated in figure 8(c) are also found 
occasionally in this region. In the case of the latter attractors, the points in a certain 
subset are visited more frequently than those outside it. No systematic relation was 
found about the values of T, for which uneven chaotic attractors are observed. 
Although no stable periodic motion was observed in this region, we found some 
interesting wave motions which continue only for a finite time. Figures 8 (a )  and 8 ( b )  



Surface waves due to resonant horizontal oscillation 

PI 

0 

227 

P1 

I 

FIGURE 6. Attractors for the unidirectionally rotating motion expressed by projecting onto 
the (p,,p,)-plane: xo = 0.05 cm. (a)  T, = 0.0059, regular rotational motion; fb) T, = 0.0065; (c )  
T, = 0.0076; (d )  T, = 0.0090. Hopf bifurcation and period-doubling bifurcation are shown. 

show the unstable approximately periodic wave motions observed for 1100T and 
15002’ respectively. Figure 9 also shows this kind of wave motion, but with a life span 
much shorter than that of figure 8(a ,  b ) .  The trajectories in figure 9 ( a ,  b )  are 
approximately invariant under the transformation ( p l ,  q l ,  p z ,  q2 )  + (p l ,  ql ,  - p z ,  - q 2 ) ,  
while that in figure 9(c) is not invariant under this transformation. The above results 
on the uneven chaotic attractors and the unstable approximately periodic wave 
motions suggest that windows for periodic motions may be found even in the region 
where 0.0133 < T, < 0.0326 if a much more accurate experimental apparatus is used. 
This is an unresolved problem. 

The attractor for the approximately periodic bidirectionally rotating motion is 
shown in figure 7 (c) .  This is not invariant under the above transformation. Since the 
‘width’ of the band in this attractor varies along the orbit, i t  is suggested that this 
band structure does not express the noise itself, although i t  may be induced by the 
noise. 

I n  order to examine the properties of attractors quantitatively, we first compute 
the power spectrum from the evolution of 

E = ; ( p ; + q ; + p ; + q ; ) .  (3.3) 
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FIGURE 7 ( a ) .  For caption see page 230. 

which is the measure of wave energy. The results are shown on a logarithmic scale 
in figure 10. Here zero-frequency components of the power spectra are eliminated. 
The power spectra for the periodic orbit shown in figure 6 (c) and the approximately 
periodic orbit shown in figure 7 ( c )  are shown in figures 10 (a) and 10 (d) .  Both of them 
contain only relatively sharp peaks. The periods of the fundamental components are 
34T and 55T in figures 10(a) and lO(d) .  On the other hand, the irregular wave 
motions shown in figure 7 ( a ,  b )  exhibit the power spectra shown in figure 10(b,  c), 
where broadband components as well as some peaks are certainly found. The periods 
associated with large peaks are around 50T in these spectra. Therefore, it can be said 
that if T, is in the region of irregular or periodic wave motions, then the evolution of 
E defined in (3.3) is certainly much slower than that of the primary wave. 

3.4. Correlation dimension and Liapunov exponent 

To characterize attractors, their dimensions are very important factors. Among 
various kinds of dimensions we use the correlation dimension suggested by 
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FIGURE 7 ( b ) .  For caption see page 230. 

Grassberger & Procaccia (1983). In order to  obtain this dimension, we first compute 
the correlation function 

2 N  

h * j  

C ( R )  = c H ( R -  IPi-&I ), 
N ( N -  1)  6 j-1 

from the data of 

(3.4) 

where H ( R )  is the step function 
1 ,  for R > O ,  
0, for R < 0, 

H ( R )  = 

and Euclidean distance is used as the distance between two vectors. Then, we 
can usually find the linear dependence of log C ( R )  on log R in a certain region where 
Rmin < R < R,,,. The correlation dimension v is computed from the gradient of 
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FIGURE 7. Attractors for several wave motions expressed by projecting to four two-dimensional 
subspaces : xo = 0.05 em. (a) Irregular unidirectionally rotating motion, T, = 0.0094 ; ( b )  Irregular 
bidirectionally rotating motion, T, = 0.0196 ; (c) Approximately periodic bidirectionally rotating 
motion, T, = 0.0329. 

this linear part. An example is shown in figure 11. We usually used about 5000 
data points. 

The v of the attractors for the irregular bidirectionally rotating motion is 2.1-2.4. 
This scattering of the values is related to the difference in unevenness of each 
attractor. The relatively even attractors, as shown in figure 7 ( b ) ,  usually give fairly 
large values (2.3-2.4), while the uneven attractors, as illustrated in figure 8 ( c ) ,  give 
smaller values. In the above results, Rmin and R,,, were about 0.2 cm and 3.0 cm 
respectively. 

The attractors for the irregular unidirectionally rotating motion give v = 2.0-2.1 
with Rmin x 0.1 cm and R,,, x 0.5 cm. This v is a little smaller than that for the 
bidirectionally rotating motion. No reliable value of v was obtained for the attractor 
shown in figure 7 ( c )  since no linear region of logC(R) was found. 

Next, in order to examine the orbital instability of attractors, the maximum 



Surface waves due to resonant horizontal oscillation 23 1 

FIGURE 8. (a )  Trajectory for an unstable approximately periodic wave motion expressed by 
projecting onto the (p,p,)-plane: xo = 0.05 cm and T, = 0.0161, the orbit during llOOT is shown. 
( b )  Trajectory for similar motion: xo = 0.05 cm and T, =0.0192, the orbit during 1500T is 
shown. (c) An example of the uneven attraetor for the irregular bidirectionally rotating motion : 
q, = 0.05 cm and T, = 0.0174. 

Liapunov exponent was computed using the following method with the data given 
in (3.5). The neighbouring point to A, is chosen so as to satisfy 

I P ~ ( ~ ) - P I  I x ern, (3.7) 

and the neighbouring point to pn, A ( ~ ) ,  is determined so as to  satisfy 

and (3.9) 

for n = 2,3,  ..., N .  Here E, and S, are constants. The condition (3.9) is imposed so 
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FIGURE 9. Trajectories for unstable approximately periodic wave motions with a small life span 
expressed by projecting onto the (p,,p,)-plane : q, = 0.05 cm. (a )  T, = 0.01 10, the orbit during 2005" 
is shown; (b )  T, = 0,0305, the orbit during 350T is shown; (c) T, = 0.0229, the orbit during 240T is 
shown. 

that  the direction of nLtTh) from pn is near the direction of the largest eigenvalue. Then 
the maximum Liapunov exponent is computed from 

(3.10) 

Sincep, is the datum with time interval T ,  it can be said that the distance between 
two neighbouring orbits changes on average as exp(A,t/T). If the em chosen is too 
small, an incorrect value of A, is obtained because of the effect of the noise. Referring 
to the values of R,,, in the computation of V ,  we chose em as 0.35 cm and 0.12 cm 
for the attractors expressing the bidirectionally and unidirectionally rotating 
motions, respectively. The average of I n  was about 0.85 for fixed S ,  = 0.5. 

The attractors for the irregular bidirectionally rotating motion give positive A, 
between 0.02 and 0.05, which is consistent with their fractional dimension. Attractors 
with larger unevenness tend to have smaller A, values. But the correlation of A,  with 
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the unevenness is weaker than that of v. So v seems more appropriate for 
discriminating between chaotic attractors of different unevenness. 

The attractors for the irregular unidirectionally rotating motion also give positive 
A,. This value is between 0.009 and 0.011 and is smaller than that for the 
bidirectionally rotating motion. 

According to the results described in this subsection, it is concluded that the 
attractors for the irregular bidirectionally or unidirectionally rotating motion are 
strange attractors with positive maximum Liapunov exponents and fractional 
dimensions between 2.0 and 2.4. 

4. Evolution equations derived by Miles 
Miles (1984 b )  derived evolution equations describing resonantly forced surface 

waves for the geometrical configuration identical to that of the experiments shown 
in $Fj2 and 3. He first assumed the free-surface displacement 7 as 

y = K E [ ( @ ~ ( ~ )  coswt+i&(7) sinwt) cos8+(@,(7) coswt+ij2(~) sinwt) sinB]J,(kr) 

+ H ( r ,  6,  t ,  T ) ,  (4.1) 

for the displacement of the forcing oscillation given by (3.1).  Here r ,  8, w and k arc 
defined immediately after (3.2). A dimensionless slow time r is defined by 

r = &'wt, 

where E is a small constant defined as 
1 

E =  ___ Y?I. 
The constant K is given by 

tanh kd 
0.3455k ' 

K=- 

(4.3) 

(4.4) 

The term #(r ,  8, t, 7) in (4.1) represents a higher-order term of O ( 2 ) .  
By using the averaged-Lagrangian method, he then derived the following 

equations describing the slow evolution of p , ,  ql, p ,  and qz on assuming that E < 1 : 

I dr  = -a~ l+( /3+Af i )p ,+B&~2++,  

I !% = -a@,-( /3+A~'Iq2-BMp1,  
dr 

dB2 
- = - aq2 + (/3+ AE)F2 - BiITq",. d7 J 

Here he assumed linear damping with constant 01. Also E and M ,  defined by 

P =;(g + 8 +p; + q;), 

M = $1 B 2  -P, q1, 

(4.5) 

are measures of the energy and the angular momentum in the modes given in (1 .1) .  
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FIGURE 10 (u, b).  For caption see facing page. 

Both A and B are constants that  depend only on d /a .  (The method for their 
computation is introduced in Miles 1984 b) .  The value p is the frequency offset defined 

(4.7) 

where oo = 27c/T,. The assumption of a small e means that the displacement of 
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FIGURE 10. Power spectra shown on a logarithmic scale computed from the evolution 
of E :  zo = 0.05 em. (a) T, = 0.0076; (b )  0.0094; ( c )  0.0196; (d )  0.0329. 
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FIGURE 11. The correlation function C ( R )  for q, = 0.05 cm and T, = 0.0196. The number 
of data points N = 4800. 

FIGURE 12. The relation between T, and E; associated with two kinds of fixed points of (4.5): 
zo = 0.05 cm. Thin solid lines and broken lines denote stable and unstable fixed points corre- 
sponding to the regular planar oscillation. A bold solid line and dotted broken lines denote 
stable and unstable fixed points corresponding to the regular rotational motion. 
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I 

the forcing oscillation is sufficiently small that  the free-surface displacement is 
also small, and that the frequency offset is sufficiently small that the evolution of 
P = ( P ~ > g l , ~ ~ > ! T z )  is slow. 

Hereinafter we fix the values of A and B a t  

A = 1.09, B = - 1.49, (4.8) 

which correspond to  a = 9.24 ern and d = 14.1 em, used in the experiments. 
The value of a was determined from the experimental data using the following 

method. First we produced some regular rotational motions or regular planar 
oscillations by oscillating with appropriate values of ( w ,  x,,). After the sudden end of 
the oscillation, we observed the damping of the free-surfqce displacements a t  one or 
two measuring points. Under the assumption that the amplitudes decrease as 

7 cc exp (-&A), (4.9) 
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I Pz 

P 
FIGURE 14. Chaotic attractors of (4.5) expressed by projecting onto four two-dimensional 
subspaces : q, = 0.05 cm. (a) Bidirectional chaotic attractor, T, = 0.021 60; ( b )  unidirectional 
chaotic attractor, T, = 0.01077. 

we obtained 6 - 0.0043 in the experimental configuration, although a little scattering 
of values was observed. 6 and a are related by 

26 
€2 

a = -. (4.10) 

There is no evidence supporting the assumption of linear damping with constant 
ratio. In  particular, the applicability of this assumption is doubtful when the 
amplitude of the wave motion changes irregularly or periodically. I n  spite of this 
problem, we adopt this assumption as the first step in our examination and use the 
value of 01 computed by (4.10). 

Hereinafter, we show the results of computations using the variables defined in $82 
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and 3, in order to  facilitate direct comparisons with the experimental results. The 
relations between these variables and those defined in (4.1) and (4.6) are given by 

\ p ,  = s&, q, = SQ", (n = 1,2) ,  

E = ?I?', M = p ,  q2 - p 2  q1 = s2B, J 
where s is defined by 

s = ~ d , ( 0 . 8 7 a k ) .  

(4.11) 

(4.12) 

Also, T, is used in place of w .  
The fixed points of (4.5) and their stability were examined in detail by Miles 

(19846, c ) .  There are two kinds of fixed points. The first, which he called planar 
harmonic, expresses the regular planar oscillation. The second, called non-planar 
harmonic, expresses the regular rotational motion. The relation between T, and Et 
associated with these fixed points is shown in figure 12 for x,, = 0.05 cm. Thin solid 
lines show that, for T, larger than a certain positive value or smaller than a certain 
negative value, the regular planar oscillation exists stably. The bold line shows that, 
for T, between certain positive and negative values, the regular rotational motion 
exists stably. Moreover, there is a certain range where.both these motions are stable. 
On the other hand, for T, between certain two positive values (0.00852 < T, < 
0.03501), no stable fixed point exists. Similar results are obtained for other xo 
satisfying 0.016 cm < xo d 0.1 cm, as shown in figure 2. Here broken lines denote 
the above boundary values. 

I n  order to examine the asymptotic behaviour of the solution to (4.5) in the region 
with no stable fixed point (the region between Lg and L; in figure 2) ,  we carried out 
numerical integration with double precision. Here we used an Adams routine in 
which the time increments and the degrees of interpolation polynomials used in 
computing predictors and correctors are determined so that relative error is less than 

The results are shown in the next section. 

5. Chaotic attractors and limit cycles of (4.5) 
The results of a systematic survey of asymptotic solutions to (4.5) within and near 

the parametric region with no stable fixed point are given in this section. Here the 
parameters in (4.5) were chosen so that xo = 0.05 cm and 0.00831 d T, d 0.03556. 
We usually regard the solutions during the time 3000T < t < 1 lOOOT as asymptotic 
ones. 

In order to examine the dependence of the characteristics of the asymptotic 
solutions on T,, we extract the following data from each solution. That is, first the 
average value of p,, <p,>, is computed. Then we obtain the set of values taken by M 
when the orbit of the solution intersects the hyperplane p ,  = (p , ) .  If the trajectory 
of the solution is a periodic orbit, the set contains only a few points. On the other 
hand, if the trajectory behaves chaotically, an infinite number of points will be 
contained in the set. Figure 13 shows this set computed for each T,. Here the value 
of p = (p , , q , , p2 ,q2 )  a t  the final time in the numerical integration with a slightly 
smaller T, was used as the initial value for each T,. Chaotic attractors are observed 
in wide ranges of T,, while many narrow windows for limit cycles are also found. 
These alternate appearances of chaotic attractors and limit cycles have already been 
found by Miles (1984b, c). No regularity is found for the position or the width of the 
windows. 

A typical chaotic attractor is shown in figure 14(a). The attractors most commonly 
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FIGURE 16. A few limit cycles of (4.5) expressed by projecting onto the (p,,p,)-plane: z,, = 0.05 cm. 
(a)  T, = 0.01823; (b)  0.01540; (c) 0.03246; (d )  0.02969. 

observed are similar to this. Since M ,  a measure of the rotation of waves, can yield 
both positive and negative values for this type of attractor, we call it a bidirectional 
chaotic attractor. 

Next we examine some bifurcations and the transitions between chaotic attractors 
of different type. When T, increases from the value corresponding to stable fixed 
points, the route to chaos associated with the Hopf bifurcation and successive period- 
doubling bifurcations is observed, as shown in figure 15 (a-9). (These bifurcations 
have already been found by Miles 1984b, c . )  We call the attractor shown in figures 
15 (9)  or 14 (b )  a unidirectional chaotic attractor, because M yields positive or negative 
definite values for it. The transition between the unidirectional and bidirectional 
chaotic attractors is observed a t  T, = 0.01078, as shown in figure 15(y, h) .  When this 
transition occurs, the wave energy increases greatly. 

The largest window for limit cycles is observed for T, around 0.0187. A typical limit 
cycle found in this window is shown in figure 16 (a) .  Some other limit cycles observed 
in other windows are shown in figure 16(b-d).  

Next, in order to characterize quantitatively a few kinds of attractors introduced 
in this section, the correlation dimension v and the maximum Liapunov exponent 
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were computed. The value of v is computed from the correlation function C ( R )  using 
the method shown in $3.4. We used a t  least 10000-34000 data points. 

Most of the bidirectional chaotic attractors yield values of v between 2.1 and 2.4. 
It seems that this scattering of v reflects the difference in the unevenness of the 
trajectory of each attractor. Attractors with larger unevenness tend to  have smaller 
values of v. On the other hand, the unidirectional chaotic attractors give values of v 
between 1.95 and 2.05. For the limit cycles, of course, u is very close to 1.  

Next we calculate the maximum Liapunov exponent using the following method. 
We first compute the asymptotic solution 

(5.1) 

by the numerical integration of (4.5). The neighbouring point to pl, p;, is chosen so 
as to satisfy 

IPT-Pl I = ern, (5.2) 

and @T-P1,Pz-P1) = 0, (5.3) 

and the neighbouring point to p,, pz, is determined by the formula 

ern (pk-p,), for n = 2,3 ,  ..., N .  P,* = P n  + jp;-p,j (5.4) 

Here em is a constant andp', is the value o f p  obtained by the numerical integration 
of (4.5) over the time t = T with the initial valuep:-,. Then the maximum Liapunov 
exponent is computed from 

Sincep, is the datum with time interval T i t  can be said that the distance between 
two neighbouring orbits changes on average as exp (A, t /T) .  We chose em as lop6 and 
N as 8000. 

It is found that the chaotic attractors certainly have positive maximum Liapunov 
exponents. The bidirectional chaotic attractors give A, = 0.0184.032, while the 
unidirectional ones give smaller values : A, = 0.012-0.013. Furthermore, as in the 
case of v, attractors with larger unevenness tend to have smaller A, vaIues. 

6. Comparison between theoretical and experimental results 
In this section the behaviour of asymptotic solutions to (4.5) described in $94 and 5 

is compared with the experimental results given in $3. 
The phase diagram is shown in figure 2. The parametric regions where the regular 

planar oscillations and/or the regular rotational motions can be experimentally 
observed almost coincide with the regions where the stable fixed points corresponding 
to those wave motions exist, although some discrepancy is found between L, and 
L; for relatively large xo (The reason for this discrepancy will be discussed below.) 
Furthermore, the region where periodic or irregular wave motions are observed 
(between L, and L4) also corresponds to the region, between Li and Li, where limit 
cycles or chaotic attractors are found as the solutions to (4.5). 

Hereinafter a detailed comparison is made only for x,, = 0.05 cm. Figure 5 shows 
the values of (p ;  + q;); for the two regular wave motions. The experimental values for 
the regular planar oscillation, denoted by circles, agree fairly well with the 
corresponding theoretical values expressed by thin solid lines. For the regular 
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FIGURE 17. The dependence of the asymptotic solutions to  (4.5) on the variation of the oscillation 
period T in the case of small windows. For each T, the set of values taken by M when p ,  yields its 
average value is shown: xo = 0.05 cm. (a )  Without variation of T ;  (bl with variation of T .  

rotational motion, the agreement between experimental values, denoted by crosses, 
and the theoretical ones, denoted by a bold solid line, is a little poor for relatively 
large (pf +&$. This discrepancy seems due to the strong nonlinearity neglected in the 
theory, because the ratio of the wave amplitude to  the radius of the container reaches 
0 . 3 4 . 4  in the experiments. 

Next we compare the chaotic attractors that  are commonly found both in the 
experiments and in the theory, and correspond to  the irregular bidirectionally 
rotating motion. Their shapes, shown in figures 7 ( b )  and 14(a), are very similar. 
Moreover, there is fairly good agreement between the values of v and A, for the 
experimental attractors and the numerically determined ones. That is, v = 2.1-2.4 
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and A, = 0.02-0.05 for the experimental ones, and v = 2.1-2.4 and A, = 0.018-0.032 
for the numerical ones. Furthermore, both in the experiments and in the theory, we 
find that attractors with larger unevenness tend to have smaller v and A, values. 

The second chaotic attractor found in the experiments, which corresponds to the 
irregular unidirectionally rotating motion and is shown in figure 7 ( a ) ,  is similar to the 
unidirectional chaotic attractor shown in figure 14 ( 6 ) .  The former gives v = 2.0-2.1 
and A, = 0.009-0.011, while the latter gives v = 1.95-2.05 and A, = 0.012-0.013. 

The experimental attractor shown in figure 7 ( c ) ,  which expresses the approxi- 
mately periodic bidirectionally rotating motion, has no direct correspondent in 
the theory, although there is a little similarity between this and the limit cycle shown 
in figure 16 (d) .  This attractor is observed in the parametric region close to that of the 
regular planar oscillation. However, in this region we could find no evidence in the 
theory of the existence of a relatively large window for a limit cycle. 

In contrast, many of the limit cycles found in the theory were not observed in the 
experiments. One exception is a series of attractors corresponding to periodic or 
irregular unidirectionally rotating motions shown in figures 6 and 7 (a ) .  Consistently 
with the theory, the route to chaos associated with a period-doubling bifurcation is 
observed, although only one bifurcation could be confirmed. In  the experiments, we 
also found some unstable approximately periodic wave motions. Some of them, 
shown in figure 8 (a,  6 ) ,  are very similar to the limit cycle shown in figure 16 (a ) .  Other 
examples of this kind, of lesser similarity, are found between figures 9(a-c) and 

Because of the above failure in observing long-lived periodic wave motions, it is 
suggested that the unavoidable variation of the forcing period T is too large to allow 
these motions. This seems correct with respect to small windows, because the amount 
of the variation of T is certainly considerably larger than their width. I n  order to 
confirm this, we made a numerical integration of (4.5) with an allowance for the 
variation of T.  That is, the value of p in (4.5) was varied randomly at every time 
interval t = T so that the corresponding variation of T has a Gaussian distribution of 
standard deviation of 0.00005 s, which represents the variation in the experiments 
and corresponds to 0.00011 of T,. The results for the quantities defined in figure 13 
are shown in figure 17. The two small windows found in figure 17 ( a )  for no variation 
of T almost break down in figure 17(b)  for the above variation of T .  

However, there are also some relatively large windows whose width is considerably 
larger than, or comparable with, the amount of the variation of T in the experi- 
ments. A comparison similar to figure 17 was made for the largest window around 
T, = 0.0187 and, as shown in figure 18, most of the limit cycles essentially retain 
their identities. The discrepancy between this result and the failure in observing long- 
lived periodic wave motions in this parametric region suggests that the validity of the 
assumptions of weak nonlinearity and linear constant damping in the theory should 
be assessed. The E defined in (4.3) should be small according to the theory, while 
E = 0.21 in the experiments with xo = 0.05 cm. This value is not particularly small. 
Furthermore, for surface waves of not particularly small amplitude, i t  seems more 
reasonable to assume a nonlinear damping. Therefore, a more accurate theory may 
also be required in order to  resolve completely the problem of the discrepancies 
between the experiments and the theory. 

In  spite of some discrepancies, mentioned above, it can be concluded that the 
weakly nonlinear equations (4.5) explain well most of the evolution of surface waves 
even for the irregular motions. This is a little surprising considering the large wave 
amplitude in the experiments. 

16(b-d). 
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FIQURE 18. The dependence of the asymptotic solutions to (4.5) on the variation of the oscillation 
period T, as in figure 17 but for the case of a large window. xo = 0.05 cm. (a )  Without variation of 
T ;  ( b )  with variation of T .  

7. The relevance to the experiments by Ciliberto & Gollub 
Some of the characteristics of the irregular motion in our experiments are similar 

to those of Ciliberto & Gollub (1985). Thus it seems interesting to compare the two 
experiments in detail. 

Their experiments are similar to ours in that a t  most two modes are excited by the 
oscillation. (Although four modes could be excited in their experiments only two 
modes were, perhaps because of small unavoidable asymmetries in the geometrical 
configuration.) There are, however, some differences between our and their 
experimental configurations. First, whereas only one of the relevant modes is excited 
directly by horizontal oscillation in our experiments, in theirs both relevant modes 
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are excited parametrically by vertical oscillation a t  frequencies close to double 
the natural ones. Secondly, while our natural frequencies of the relevant modes 
are strictly equal, their frequencies differ from each other by small amounts. 
Thirdly, they used a cylindrical fluid layer of depth d = 1 ern in a container of radius 
u = 6.35 em. Therefore, the excited waves must be regarded as shallow-water 
capillary-gravity waves in contrast with the waves in our experiments with 
a = 9.24 cm and d = 14.1 cm. 

Because of the small variations in natural frequencies in their experiment, we 
cannot make a direct comparison for the regions where irregular surface waves are 
observed. But some of the characteristics of the attractors in these regions are 
similar. That is, the chaotic attractor examined by them has a correlation dimension 
close to 2.2 and has a positive maximum Liapunov exponent. This result is similar 
to ours for the most common chaotic attractor, although its correlation dimension is 
scattered in the range of 2.1-2.4. (Here note that, unlike us, they used the method of 
reconstruction of the attractors in a phase space. But this does not seem to give rise 
to serious problems in comparing, because they suggest that four variables are 
sufficient to describe their irregular motions.) Furthermore, the route to chaos 
associated with period-doubling bifurcation is observed in both experiments. 

In view of the above results, i t  would be interesting to study whether results 
similar to ours can be obtained for other systems where only two modes are relevant. 
Furthermore, it may also be valuable to examine systems where a t  least three modes 
are relevant. 

We wish to thank Professor M. Oikawa for his continual encouragement. We 
acknowledge the technical assistance of Miss S. Hoshino. 
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